direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×C4.Dic5, C20.74C24, C24.5Dic5, (C23×C4).9D5, C5⋊2C8⋊13C23, C10⋊6(C2×M4(2)), C4.73(C23×D5), C5⋊6(C22×M4(2)), (C2×C10)⋊15M4(2), (C22×C20).56C4, (C23×C20).16C2, C10.62(C23×C4), (C23×C10).17C4, C2.3(C23×Dic5), C20.239(C22×C4), (C2×C20).799C23, (C22×C4).472D10, C23.35(C2×Dic5), (C22×C4).18Dic5, C4.38(C22×Dic5), (C22×C20).546C22, C22.28(C22×Dic5), (C2×C20).473(C2×C4), (C2×C5⋊2C8)⋊48C22, (C22×C5⋊2C8)⋊23C2, (C2×C4).86(C2×Dic5), (C2×C4).827(C22×D5), (C22×C10).208(C2×C4), (C2×C10).306(C22×C4), SmallGroup(320,1453)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C20 — C5⋊2C8 — C2×C5⋊2C8 — C22×C5⋊2C8 — C22×C4.Dic5 |
Generators and relations for C22×C4.Dic5
G = < a,b,c,d,e | a2=b2=c4=1, d10=c2, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d9 >
Subgroups: 542 in 298 conjugacy classes, 207 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C23, C23, C23, C10, C10, C10, C2×C8, M4(2), C22×C4, C22×C4, C24, C20, C20, C2×C10, C2×C10, C22×C8, C2×M4(2), C23×C4, C5⋊2C8, C2×C20, C22×C10, C22×C10, C22×C10, C22×M4(2), C2×C5⋊2C8, C4.Dic5, C22×C20, C22×C20, C23×C10, C22×C5⋊2C8, C2×C4.Dic5, C23×C20, C22×C4.Dic5
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, M4(2), C22×C4, C24, Dic5, D10, C2×M4(2), C23×C4, C2×Dic5, C22×D5, C22×M4(2), C4.Dic5, C22×Dic5, C23×D5, C2×C4.Dic5, C23×Dic5, C22×C4.Dic5
(1 56)(2 57)(3 58)(4 59)(5 60)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 76)(22 77)(23 78)(24 79)(25 80)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 148)(102 149)(103 150)(104 151)(105 152)(106 153)(107 154)(108 155)(109 156)(110 157)(111 158)(112 159)(113 160)(114 141)(115 142)(116 143)(117 144)(118 145)(119 146)(120 147)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(57 67)(58 68)(59 69)(60 70)(81 115)(82 116)(83 117)(84 118)(85 119)(86 120)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(99 113)(100 114)(121 142)(122 143)(123 144)(124 145)(125 146)(126 147)(127 148)(128 149)(129 150)(130 151)(131 152)(132 153)(133 154)(134 155)(135 156)(136 157)(137 158)(138 159)(139 160)(140 141)
(1 36 11 26)(2 37 12 27)(3 38 13 28)(4 39 14 29)(5 40 15 30)(6 21 16 31)(7 22 17 32)(8 23 18 33)(9 24 19 34)(10 25 20 35)(41 76 51 66)(42 77 52 67)(43 78 53 68)(44 79 54 69)(45 80 55 70)(46 61 56 71)(47 62 57 72)(48 63 58 73)(49 64 59 74)(50 65 60 75)(81 110 91 120)(82 111 92 101)(83 112 93 102)(84 113 94 103)(85 114 95 104)(86 115 96 105)(87 116 97 106)(88 117 98 107)(89 118 99 108)(90 119 100 109)(121 157 131 147)(122 158 132 148)(123 159 133 149)(124 160 134 150)(125 141 135 151)(126 142 136 152)(127 143 137 153)(128 144 138 154)(129 145 139 155)(130 146 140 156)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 95 6 100 11 85 16 90)(2 84 7 89 12 94 17 99)(3 93 8 98 13 83 18 88)(4 82 9 87 14 92 19 97)(5 91 10 96 15 81 20 86)(21 119 26 104 31 109 36 114)(22 108 27 113 32 118 37 103)(23 117 28 102 33 107 38 112)(24 106 29 111 34 116 39 101)(25 115 30 120 35 105 40 110)(41 140 46 125 51 130 56 135)(42 129 47 134 52 139 57 124)(43 138 48 123 53 128 58 133)(44 127 49 132 54 137 59 122)(45 136 50 121 55 126 60 131)(61 151 66 156 71 141 76 146)(62 160 67 145 72 150 77 155)(63 149 68 154 73 159 78 144)(64 158 69 143 74 148 79 153)(65 147 70 152 75 157 80 142)
G:=sub<Sym(160)| (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,76)(22,77)(23,78)(24,79)(25,80)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159)(113,160)(114,141)(115,142)(116,143)(117,144)(118,145)(119,146)(120,147), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(99,113)(100,114)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,141), (1,36,11,26)(2,37,12,27)(3,38,13,28)(4,39,14,29)(5,40,15,30)(6,21,16,31)(7,22,17,32)(8,23,18,33)(9,24,19,34)(10,25,20,35)(41,76,51,66)(42,77,52,67)(43,78,53,68)(44,79,54,69)(45,80,55,70)(46,61,56,71)(47,62,57,72)(48,63,58,73)(49,64,59,74)(50,65,60,75)(81,110,91,120)(82,111,92,101)(83,112,93,102)(84,113,94,103)(85,114,95,104)(86,115,96,105)(87,116,97,106)(88,117,98,107)(89,118,99,108)(90,119,100,109)(121,157,131,147)(122,158,132,148)(123,159,133,149)(124,160,134,150)(125,141,135,151)(126,142,136,152)(127,143,137,153)(128,144,138,154)(129,145,139,155)(130,146,140,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,6,100,11,85,16,90)(2,84,7,89,12,94,17,99)(3,93,8,98,13,83,18,88)(4,82,9,87,14,92,19,97)(5,91,10,96,15,81,20,86)(21,119,26,104,31,109,36,114)(22,108,27,113,32,118,37,103)(23,117,28,102,33,107,38,112)(24,106,29,111,34,116,39,101)(25,115,30,120,35,105,40,110)(41,140,46,125,51,130,56,135)(42,129,47,134,52,139,57,124)(43,138,48,123,53,128,58,133)(44,127,49,132,54,137,59,122)(45,136,50,121,55,126,60,131)(61,151,66,156,71,141,76,146)(62,160,67,145,72,150,77,155)(63,149,68,154,73,159,78,144)(64,158,69,143,74,148,79,153)(65,147,70,152,75,157,80,142)>;
G:=Group( (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,76)(22,77)(23,78)(24,79)(25,80)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159)(113,160)(114,141)(115,142)(116,143)(117,144)(118,145)(119,146)(120,147), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(99,113)(100,114)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,141), (1,36,11,26)(2,37,12,27)(3,38,13,28)(4,39,14,29)(5,40,15,30)(6,21,16,31)(7,22,17,32)(8,23,18,33)(9,24,19,34)(10,25,20,35)(41,76,51,66)(42,77,52,67)(43,78,53,68)(44,79,54,69)(45,80,55,70)(46,61,56,71)(47,62,57,72)(48,63,58,73)(49,64,59,74)(50,65,60,75)(81,110,91,120)(82,111,92,101)(83,112,93,102)(84,113,94,103)(85,114,95,104)(86,115,96,105)(87,116,97,106)(88,117,98,107)(89,118,99,108)(90,119,100,109)(121,157,131,147)(122,158,132,148)(123,159,133,149)(124,160,134,150)(125,141,135,151)(126,142,136,152)(127,143,137,153)(128,144,138,154)(129,145,139,155)(130,146,140,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,6,100,11,85,16,90)(2,84,7,89,12,94,17,99)(3,93,8,98,13,83,18,88)(4,82,9,87,14,92,19,97)(5,91,10,96,15,81,20,86)(21,119,26,104,31,109,36,114)(22,108,27,113,32,118,37,103)(23,117,28,102,33,107,38,112)(24,106,29,111,34,116,39,101)(25,115,30,120,35,105,40,110)(41,140,46,125,51,130,56,135)(42,129,47,134,52,139,57,124)(43,138,48,123,53,128,58,133)(44,127,49,132,54,137,59,122)(45,136,50,121,55,126,60,131)(61,151,66,156,71,141,76,146)(62,160,67,145,72,150,77,155)(63,149,68,154,73,159,78,144)(64,158,69,143,74,148,79,153)(65,147,70,152,75,157,80,142) );
G=PermutationGroup([[(1,56),(2,57),(3,58),(4,59),(5,60),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,76),(22,77),(23,78),(24,79),(25,80),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,148),(102,149),(103,150),(104,151),(105,152),(106,153),(107,154),(108,155),(109,156),(110,157),(111,158),(112,159),(113,160),(114,141),(115,142),(116,143),(117,144),(118,145),(119,146),(120,147)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(57,67),(58,68),(59,69),(60,70),(81,115),(82,116),(83,117),(84,118),(85,119),(86,120),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(99,113),(100,114),(121,142),(122,143),(123,144),(124,145),(125,146),(126,147),(127,148),(128,149),(129,150),(130,151),(131,152),(132,153),(133,154),(134,155),(135,156),(136,157),(137,158),(138,159),(139,160),(140,141)], [(1,36,11,26),(2,37,12,27),(3,38,13,28),(4,39,14,29),(5,40,15,30),(6,21,16,31),(7,22,17,32),(8,23,18,33),(9,24,19,34),(10,25,20,35),(41,76,51,66),(42,77,52,67),(43,78,53,68),(44,79,54,69),(45,80,55,70),(46,61,56,71),(47,62,57,72),(48,63,58,73),(49,64,59,74),(50,65,60,75),(81,110,91,120),(82,111,92,101),(83,112,93,102),(84,113,94,103),(85,114,95,104),(86,115,96,105),(87,116,97,106),(88,117,98,107),(89,118,99,108),(90,119,100,109),(121,157,131,147),(122,158,132,148),(123,159,133,149),(124,160,134,150),(125,141,135,151),(126,142,136,152),(127,143,137,153),(128,144,138,154),(129,145,139,155),(130,146,140,156)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,95,6,100,11,85,16,90),(2,84,7,89,12,94,17,99),(3,93,8,98,13,83,18,88),(4,82,9,87,14,92,19,97),(5,91,10,96,15,81,20,86),(21,119,26,104,31,109,36,114),(22,108,27,113,32,118,37,103),(23,117,28,102,33,107,38,112),(24,106,29,111,34,116,39,101),(25,115,30,120,35,105,40,110),(41,140,46,125,51,130,56,135),(42,129,47,134,52,139,57,124),(43,138,48,123,53,128,58,133),(44,127,49,132,54,137,59,122),(45,136,50,121,55,126,60,131),(61,151,66,156,71,141,76,146),(62,160,67,145,72,150,77,155),(63,149,68,154,73,159,78,144),(64,158,69,143,74,148,79,153),(65,147,70,152,75,157,80,142)]])
104 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 8A | ··· | 8P | 10A | ··· | 10AD | 20A | ··· | 20AF |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 2 | ··· | 2 |
104 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D5 | M4(2) | Dic5 | D10 | Dic5 | C4.Dic5 |
kernel | C22×C4.Dic5 | C22×C5⋊2C8 | C2×C4.Dic5 | C23×C20 | C22×C20 | C23×C10 | C23×C4 | C2×C10 | C22×C4 | C22×C4 | C24 | C22 |
# reps | 1 | 2 | 12 | 1 | 14 | 2 | 2 | 8 | 14 | 14 | 2 | 32 |
Matrix representation of C22×C4.Dic5 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 0 |
0 | 19 | 1 | 0 | 0 |
0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 39 | 0 |
0 | 0 | 0 | 0 | 21 |
40 | 0 | 0 | 0 | 0 |
0 | 37 | 15 | 0 | 0 |
0 | 18 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 9 | 0 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,32],[1,0,0,0,0,0,19,16,0,0,0,1,16,0,0,0,0,0,39,0,0,0,0,0,21],[40,0,0,0,0,0,37,18,0,0,0,15,4,0,0,0,0,0,0,9,0,0,0,1,0] >;
C22×C4.Dic5 in GAP, Magma, Sage, TeX
C_2^2\times C_4.{\rm Dic}_5
% in TeX
G:=Group("C2^2xC4.Dic5");
// GroupNames label
G:=SmallGroup(320,1453);
// by ID
G=gap.SmallGroup(320,1453);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,1123,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^10=c^2,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^9>;
// generators/relations